RADHA GOVIND UNIVERSITY RAMGARH, JHARKHAND DEPARTMENT OF MATHEMATICS

COURSE CURRICULUM POSTGRADUATE COURSES

UNDER CHOICE BASE CREDIT SYSTEM

M. SC.

For the session 2023-25

Radha Govind University, Ramgarh, Jharkhand Department of Mathematics PROGRAM: POST GRADUATE

Vision & Mission

Vision:

Aspires to be one of the top most Mathematics Departments in the country and compete globally as a centre of Teaching and Research in Mathematics.

Mission:

- M1: To impart world-class education in an environment of fundamental and applied research in Mathematics.
- M2: To conduct cutting–edge research to create new knowledge and to spread this knowledge through publications in reputed leading journals.
- M3: To prepare the professional groups in Mathematics to support the national development programs within the public and centres of higher learning.
- M4: To develop human potential to its fullest extent so that scholarly competent and very talented captains can emerge in various professions.

Program Educational Objectives (PEO's)

The objectives of the M.Sc. (Mathematics) Programme are to develop students with the following capabilities:

- **PEO1:** To provide students with knowledge and capability in formulation and analysis of mathematical models of real life applications.
- **PEO2**: To provide student's with advanced mathematical and computational skills that prepare them to pursue higher studies and conduct research.
- **PEO3**: To provide with individual and team work that prepare them to function as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.
- **PEO4** :To provide with usage of modern tools that prepare them to create, select and apply appropriate techniques, resources, and modern mathematical activities with an understanding of the limitations.

Program Outcomes (PO's)

On successful completion of the M.Sc. (Mathematics) Programme, students will be able to:

PO1:KNOWLEDGE : Communicate mathematical ideas effectively and lucidly in writing as well as orally. **PO2: PERPETUAL LEARNING** : Pursue research or careers in industry, mathematical sciences and allied fields.

PO3: **SKILL** :Acquire relevant knowledge and skills appropriate to professional activities and demonstrate the highest standards of ethical issues in mathematical sciences.

PO4 :**ETHICAL VALUES** : Become an enlightened citizen with a commitment to deliver one's responsibilities within the scope of bestowed rights and privileges.

PO5:PROBLEM SOLVER/ THINKER: Inculcate critical thinking to carry out scientific investigation objectively without being biased with preconceived notions.

PO6:DIGITAL LEARNER: Have sound knowledge of mathematical modelling, programming and computational techniques as required for employment in industry.

PO7: **INQUISITIVE**: Possess a strong foundation in core areas of Mathematics, both pure and applied.

PO8: **THINKER** : Think mathematically in a critical manner.

PO9: COMMUNICATOR: Communicate Mathematics accurately, precisely and effectively.

PO10: **AWARENESS**: Develop a range of generic skills helpful in employment, internships and social activities.

PO11: RESEARCH / INNOVATIVE : Undertake further studies in Mathematics and its allied areas on multiple disciplines concerned with Mathematics.

PO12:JOB OPPORTUNITIES: Students will become employable; they will be eligible for career opportunities in Industry, or will be able to opt for entrepreneurship.

Program Specific Outcomes (PSO's)

After completing the Programme, the students will be able to:

PSO1: Take part and qualify for the state and national level competitive examinations such as SET, CSIR-UGC NET, GATE, NBHM ,ISRO, DRDO, NAL, ICT etc.

PSO2: Join higher education for Ph. D. Programme and for a variety of jobs both in the industry and in academic institutions all over the world.

PSO3: Student should be able to apply their skills and knowledge that is translate information presented erbally into mathematical form, select and use appropriate mathematical formulae or techniques in order to process the information and draw the relevant conclusion.

Course Title	MODERN ALGEBRA	
Type of Course		
Credit	4	
Course Assessn	nent Semester Tests -30%	
	Semester Examination 70%	
	Contents of Syllabus	No of Questions
Unit I - Group Th	eory	Questions
-	nutation groups S ₅ and A, Normal and Subnormal series, Jordan-Holder theorem, Solvable	
	groups. Group action, orbit -stabilizer theorem, Sylow's theorems (proofs using group	02
actions).	groups. Group deuton, orore statement incorent, 5910% s'ancorents (proofs asing group	-
actions).		
·		
	lashus	
Unit II- Linear A	transformation, Canonical Forms — Similarity of linear transformations. Invariant	02
	values and Eigen vectors, Reduction to diagonal, triangular and Jordan forms. The	02
primary decompos		
p		
Unit III — Field		
	nsion fields, finite extension, Algebraic and transcendental extensions. splitting fields-	02
existence and unio	queness, Separable and inseparable extension. Normal extensions. Perfect fields.	
Unit IV — Finite	Field	
		02
	rems on finite fields, Primitive elements. Algebraically closed fields. Automorphism of	
extensions, Galois	extension. Fundamental theorem of Galois Theory.	
Textbooks*	D.S. Dummit D.M. Easte Abstract Alashra John Wilow & Song (2002)	
/Reference	 D.S. Dummit, R.M. Foote, Abstract Algebra — John Wiley&Sons (2003) I.N.	
Books	 M. Artin. Algebra, Prentice-Hall of India, 1991. 	
200m	 K. Hoffman and R. Kunze (2" <i>edition</i>),<i>Linear Algebra</i>, Prentice Hall of India, New 	Delhi
	(1997)	
	 N.S. Gopala Krishnan, University Algebra, New Age Int.Publ. 	
	 William J Gilbert, Madern Algebra with Applications, Wiley India, 2005. 	

Course Title	Real Analysis	
Type of Course	Theory, Paper II	
Credit	4	
Course Assessm	ent Sessional Tests 30% Semester Examination 70%	
	Contents of Syllabus	No of Questions
Integration and	ition and existence of Reiemann Stieltjes integral Properties of the Integral differentiation the fundamental theorem of Calculus (Fourier series) Bessels eval theorem, Fourier series representation of functions	02
criterion for unif	ences and series of functions pointwise and uniforin convergence Cauchy form convergence Weierstrass M test, Abel's and Dirichlet s test for uniform d continuity uniform convergence	02
	mann Stieltjes integration uniform convergence and differentiation, Weierstarss heorem Power Series uniqueness theorem for power series Abel s and Tauber's	02
R Chain rule Pa higher orders Y	ctions of several variables linear transformation Derivatives in an open subset of artial derivatives interchange of the order of differentiation Derivatives of Young theorem Schwartz theorem Taylor's theorem, Inverse function theorem on theorem Jacobians	02
Textbooks */ Reference Books	 Walter Rudin Principles of Mathematical Analysis (3rd edition) Mc Graw-Hill. Kogakushu 1976 Internations student edition T.M Apostal Mathematical Analysis, Narosa publishing House New Delhi Shanti Narain Real Analysis Chand & Co New Delhi. Malik and Arora Mathematical Analysis 	1985, 3

Course Title	Topology	
Type of Course	e Theory, Paper III	
Credit	4	
Course Assess	ment Sessional Tests 30% Semester Examination 70%	
	Contents of Syllabus	No of Questions
UNIT I		02
	d uncountable sets Infinite Sets and the Axiom of Choice (statement only) bers Schroeder Bernstein theorem Cantor s theorem and continuum hypothesis. statement only)	
subscts. Nei	efinition and examples of topological spaces closed sets, Closure. Dense ighbourhoods Interior exterior and boundary. Accomulation points and derived nd sub base Subspaces and relative topologies.	02
second cour	First and Second countable spaces Lindelof's theorem separable spaces, ntability and separability separation axioms To TI, T2 T3 T4 their tions and basic properties. Urysohn' Lemma. Tietze extension theorem .	02
UNIT IV		02
Compactness, Compactness	, continuous functions and compact sets. BasiC property of compactness s and finite intersection property Tychonoffs Theorem connected and spaces and their basic properties,	
Textbooks */ Reference Books	 K D Joshi : Introduction to General topology, Wiley eastern Ltd. 1963 J L Kelly – General Topology, Van Nostrand, Reinhold Co. New York, 1995. W J Pervin- Foundation of general Topology, Academic Press Inc New York 194. K K Jha – Advance General Topology, Nav Bharat Prakashan Delhi G F Simmons – Introduction to Topology and Modern Analysis, Mc Graw Hill. 	

Course Title	Complex Analysis	
Type of Course	Theory, Paper IV	
Credit	4	
Course Assessme	ent Sessional Tests 30% Semester Examination 70%	
	Contents of Syllabus	No of Questions
	ex Integration, Cauchy Goursat's theorem, Cauchy's Integral formula, Higher e, Morera;s Theorem, Cauchy's inequality, Liouville's theorem.	02
UNIT II The fundamenta Lemma, Laurent	l theorem of Algebra, Taylor's theorem, Maximum modulus principle, Schwarz 2's series.	02
e	ities, Meromorphic function, the argument principle, Rouche's theorem, Poles amental theorem, residues, Cauchy Residue Theorem, Evaluation of integrals.	02
conformal mapp	mation, their properties and classification, Definition and examples of ing. Analytic continuation uniqueness of direct analytic continuation, alytic continuation along a curve, Power series, method of analytic continuation	. 02
Textbooks* /Reference Books	 L V Ahifor – Complex Analysis, Mc Graw Hill, 1979 S Lang Complex Analysis, Addison Wesely 1977. Walter Rudin, Real and Complex Analysis, Mc Graw Hill Co 1966. E C Tichmarsh – The theory of functions, Oxford University Press, Londo S Ponnusamy – foundation of Complex analysis, Narosa Publishing House Shanti Narain – Complex variables 	

Course Title	Basic Computer and Programming in 'C'	
Type of Course	Theory, Paper V	
Credit	4	
Course Assessment	Sessional Tests 30%	
	Semester Examination 70% [40% Theory, 30% Practical] Contents of Syllabus	NI C
	Contents of Synabus	No of Questions
,Generations of comp	O COMPUTERS: Block Diagram of computer, Functioning of computer outer, Classification of compuers, Characteristics, Advantage and Limitations of er memory, Primary and Secondary, Types of Primary memory.	02
binary arithmetic, AS ALGORITHM AND an algorithm, classifi	imal, Binary, Octal, Hexadecimal, number system, features and convariance, SCII and EBCDIC codes. FLOW CHART : Algorithm for problem solving, an introduction, properties of cation, algorithm logic, flow chart.	02
Importance of C , bas Scalar Data Type \rightarrow	n overview of programming , programming language classification, History of C, sic structure of C, program, executing a C program, compiling and linking . Declaration, different types of integers, different kinds of Integer constant, initialization mixing types enumeration types, the void data type, Tydefs, find ect, pointers.	02
operators, assignmen expressions, Evaluati Control flow, conditi- continue' statement.	asions, Operatus, Introduction, Orthometic operators, rational operators, logical t operators, Increment and decrement operators, Bit wise operators. Arithmetic on of expresson, precedence of arithmetic operator. onal branching, The Switch statement, Looping, Nested loops, the ' brake and The Go to statement. Infinite loops, arrays and pointers, declaring an array, Initializing array. Multidimensional arrays.	02
 Programme of f Programme of f Programme of f Simpson's ¹/₃ rd Gauss's Elimina Gauss seidal me Numerical diffe Lagrange's inter Newton's Interp 	ation method. ethod.	

Course Title		Differential Equation and Special Functions	
Type of Cou		Theory, Paper VI	
Credit		4	
Course Asse	ssment	Sessional Tests 30%	
		Semester Examination 70%	1
		Contents of Syllabus	No of Questions
UNIT I Int	roduction (to Generalized Hyper geometric function, Differential Equations satisfied by	
pFq. Saclch	ut 'Z' theo	rem,	
Whipples t	heorem, Di	ixon's theorem, Integrals involving generalized hyper geometric functions.	02
Contiguous	function re	elations, Kummer's theorem, ramanujan's theorem.	
UNIT II			
		e Polynomials, Recurrence Relation, Orthogonal properties, expansion of ng functions, Rodrigues formula for Hermite Polynomials.	02
formula	onality. Ex	re's Polynomials, recurrence relations, generating functions, Rodrigue's pamry special results, Laguerre's associated differential equations. More	02
	n of Elliptic	Polynomials, Generating functions, Rodrigue's formula and Orthogonality, c function. Properties. Weierstrass ellipite, Jacobian theta function, Zeroes of	02
Textbooks */ Reference Books	2. 3. 4.	W T Reid – Ordinary Differential Equations, John Wiley & Sons NY (1971) E A Coddington and Levinson – Theory of Ordinary Differential Equations, I Hill NY (1955) Sneddon I N (1961) – Special Functions of Mathematical Physics and Chemi Oliver and Boyd, Edinburg Bell W W (1966) – Special functions for Scientific and Engineers, D Van No Conv. Ltd. London. Rainville, E D (1960) Special Functions , Macmillan , New York.	Mc Graw stry;

Course Title	Differential Geometry and Tensor Calculus	
Type of Course	Theory, Paper VII	
Credit	4	
Course Assessment	Sessional Tests 30%	
	Semester Examination 70%	
	Contents of Syllabus	No of
		Questions
UNIT I		
-	re and torsion. Serret- Frenet formula. Circular helix, the circle of curvature.	02
Osculating sphere, Be	ertrand curves.	02
UNIT II		
Curves on a surface-p	parametric curves. fundamental magnitude, curvature of normal section.	02
	nd principal curvatures, lines of curvature, Rodrigues formula. Dupin's	
	f Euler, Conjugate directions and Asymptotic lines.	
UNIT III		
-	ly of surfaces Envelope the edge of regression, Developables associated with	02
space curves. Geode	esics-differential equation of Geodesic. Torsion of a Geodesic.	
		<u> </u>
UNIT IV		
Tensors, Tensor Alge	bra, Quotient theorem. Metric Tensor, Angle between two vectors.	02
Textbooks Referen		
	N. Sharma and A.R. Vasistha, Differential Geometry.	
	E. Weatherburn, Differential geometry of three dimensions.	
Reference 2. C. Books 3. P.I 4. C.	P. Gupta & G.S.Malik. Three dimensional differential geometry. E. Weatherburn. Tensor calculus.	
5. R.	S. Mishra, Tensor Calculus and Riemanian Geometry.	

Course Title	Analytical Dynamics and Gravitation	
Type of Course	Theory, Paper VIII	
Credit	4	
Course Assessm		
	Semester Examination 70%	
	5	No of Questions
UNIT I		
Generalized coord	inates Holonomic and Non-holonomic systems. Scleronomic and Rheonomic	
•	ed potential. Lagrange's equations of first kind. Lagrange's equations of second	02
kind. Energy equa	tion of conservative fields.	
UNIT II		
Hamilton's variabl	es, Hamilton canonical equations. Cyclic coordinates Routh's equations, Jacobi-	02
Poisson Theorem.	Fundamental lemma of calculus of variations.	
Motivating proble	ms of calculus of variations. Shortest distance. Minimum surface of revolution.	
Brachstochrone pr	oblem, Geodesic.	
UNIT III		
Hamilton's Princip	le, Principle of least action. Jacobi's equations. Hamilton-Jacobi equations. Jacobi	02
theorem. Lagrange	brackets and Poisson brackets. Invariance of Langrange brackets and Poisson	
brackets under car	onical transformations.	
UNIT IV		
Gravitation: Attra	ction and potential of rod, spherical shells and sphere. Laplace and Poisson equations.	02
Work done by sel	f attracting systems. Distributors for a given potential. Equipotential surfaces.	
Textbooks	References :	
*/	• H. Goldstein, Classical Mechanics (2" ^d edition), Narosa Publishing House, New 1	Delhi.
Reference	• 1.M.Gelfand and S.V.Fomin Calculus of variation, prentice Hall.	
Books	• S.L. Loney, An elementary treatise on Statics, Kalyani Publishers, N. Delhi 197	
	A.S.Ramsey, Newtonian Gravitation. The English Language Book Society and t	he
	 Cambridge University Press. N.C. Rana & P.S.Chandra Joag, Classical Mechanics. Tata McGraw Hill 1991. 	
	 Lours N. Hand and Jane!, D. Finch, Analytical Mechanics, Cambridge University 	Press,
	199	

Course Title	Difference Equations	
Type of Course	Theory, Paper IX [A]	
Credit	4	
Course Assessment	Sessional Tests 30% Semester Examination 70%	
	Contents of Syllabus	No of Questions
and problems. Fundam Relation between oper One or more missing ter	lifferences: Introduction of finite difference — Differences. Differences formulae nental theorem of difference calculus, properties of the operators A and E, ator E of finite differences and differential coefficient D of differential calculus. rms method I and II, Factorial notation methods of representing any polynomial, Leibnitz rule, effect of an error in a tabular value.	02
various type of linear di independent functions. difference equations w	Introduction. definition of difference equation. solution of the difference equations. Ifference equation. differential equation as limit of difference equations. Linearly Homogenous difference equation with constant coefficients. Homogenous linear ith variable coefficients. existence and uniqueness theorem.	02
coefficient and special . equation with constan A , matrix method for t	ation with constant coefficient, method of undetermined coefficient operator method to find particular solution, Solution of linear difference t coefficient using Variation of parameter, calculation of nth power of a matrix the solution of system of linear difference equation, generating function for difference equation, applications of difference equations, cobweb	02
*	artial differential equations : Boundary — value problem with boundary conditions. e equations. Heat equation.	02
Reference Books •	Calvin Ahlbrandt and Allan C. Peterson. Discrete Hamiltonian Systems. Ference Equations. Continued Fractions and Riecati Equations. Kluwer. Boston 1996. Kalman Busby and Ross, Discreate Mathematical structure, Pearsion education. di, Difference equation, springer.	

Course Title	Number Theory	
Type of Course	Theory, Paper IX [B]	
Credit	4	
Course Assessme	ent Sessional Tests 30% Semester Examination 70%	
	Contents of Syllabus	No of Questions
UNIT I Divisibity theory : Fundamental theo	Gretest Common divisor, Least common multiple, linear diophantine equation, rem of arithmetic	02
Theorem, polynom	sidue system, test of divisibility, linear congruencs, Chinese Remainder ial congruences, application in solution of Diophantine equation, Fermat's Little culers genaralization of FLT1, Wilson's theorem.	02
numbers, the Mob arithmetic functions	<i>elers 0, cr and z)</i> , definitions, examples and their properties, perfect ius Inversion formula, properties of Mobius function, convolution of , group properties of arithmetic functions, recurrence functions, Fibonacci elementary properties.	02
properties, Gauss	es, Quadratic Reciproctiy law, Euler's criterion, Legendre symbol and its Lemma,Jacobi symbol and its properties. me simple cryptosystem, Enciphering matrices, Idea of public key cryptography.	02
Textbooks */ Reference Books S	 Calvin Ahlbrandt and Allan C. Peterson. Discrete Hamiltonian Syste Difference Equations. Continued Fractions and Riecati Equations. Kluwer. Boston 1 Kalman Busby and Ross, Discreate Mathematical structure, Pearsion edu. Elaydi, Difference equation, springer. 	996.

Course Title	Advanced Discrete Mathematics	
Type of Course	Theory, Paper IX [C]	
Credit	4	
Course Assessm	ent Sessional Tests 30% Semester Examination 70%	
	Contents of Syllabus	No of Questions
state Machine, Fi	nmars, Finite state machines with output, Finite state machines with no output, Finite nite state automata, deterministic finite state automata(DFSA), non deterministic ata(NDFSA), transition diagram.	02
*	FSA and NDFSA, Moor machine, Mealy machine and Turning machine, gular expressions,Language determined by finite state automaton, grammars.	02
UNIT III		02
•	x colouring, chromatic number, chromatic polynomial, Brooks theorem, edge atic index, map colouring, six colour theorem, Five colour theorem.	
algorithm. Hall's n	oh,Ore's theorem, Dirac' theorem, The Shortest path problem, Dijkstra's narriage, theorem, transvarsal theory, Alternative proof of Hall's theorem using	02
Textbooks */ Reference Books	 applications of Hall's theorem. Graph Theory — R. J. Wilson. Kalman Busby and Ross, Discreate mathematical structure, Pearsion education. D. S. Malik and M. K. Sen : Discrete mathematical structures : theory and application Thomson; Australia; 2004. Edward R. Scheinerman : Mathematics A Discrete Introduction; Thomson Asia Singapore; 2001. Discrete mathematical structure, R.P.Grimaldi, Pearson education. 	IS;

Course Title	Functional Analysis	
Type of Cours	se Theory, Paper X	
Credit	4	
Course Assess		
	Semester Examination 70%	
		No of Questions
	spaces. Banach spaces and examples. Quotient space of normed linear spaces and its equivalent norms.	02
with examples	ar transformations, normed linear spaces of bounded linear transformations, dual spaces 3.Hahn-Banach theorem Open mapping and closed graph theorem, the natural N in N**. Reflexive spaces.	02
orthonormal s	e spaces. Hilbert spaces. Orthonormal Sets. Bessel's inequality. Complete ets and Parseval's identity. Projection theorem. Rietz representation theorem Adjoint of a Hilbert space.	02
	of Hilbert spaces. Self-adjoint operators. Positive, normal and unitary operators. transformation & linear functionals	02
Textbooks R */ Reference Books	 eferences: 1. G.F. Simmons, Topology and modern analysis TMH. 2 G. Bachman and L. Narici, Functional Analysis, Academic Press, 1966. 3 R.E. Edwards, Functional Analysis. Holt Rinehart and Winston, New York 1958. 4 C. Goffman and G. Pedrick. First Course in Functional Analysis, Prentice Hall of Ind Delhi, 1987. 	lia, New
	5 E. Kreyszig, Functional analysis with application, John wiley and sons.	

Course Title	!	Partial Differential Equations	
Type of Cou	rse	Theory, Paper XI	
Credit		4	
Course Asse	ssment	Sessional Tests 30% Semester Examination 70%	
		Contents of Syllabus	No of Questions
		olutions of two and three dimensional Laplace equation in nois functions. Boundary value problems.	02
-	on — Derivation and fur rm. Application problem	ndamental solution of one dimensional Heat equation in as.	02
-	on — Derivation and furm. Application problem	ndamental solution of one dimensional wave equation in as.	02
		of variables, Fourier transform and Laplace transform, undary value problems.	02
Textbooks */ Reference Books	Volume 19, AM 2 I.N. Sneddon,Use 3 P. Prasad and R. J	tial Differential Equations, Graduate Studies in Mathem S, 1998. of integrals transforms McGraw Hill. Ravindran ; Partial Differential equation. rrtial differential equation, new age.	natics,

Course Title	Fluid Mechanics	
Type of Course	e Theory, Paper XII	
Credit	4	
Course Assessr	Semester Examination 70%	
	Contents of Syllabus	No of Questions
system. Bounda	agrangian and Eulerian methods. Equation of continuity in different coordinate ary surfaces. Stream lines. Path lines and streak lines. Velocity potential, rotational motions. Vortex lines.	02
	otion — Lagrange 's and Euler's equations of motion. Bernoulli's theorem. ion by flux method. Impulsive actions. Stream function Irrotational motion.	02
-	ity potential. Sources, sinks doublets and their images in two dimension. ping. Milne-Thomson circle theorem.	02
cylinders in an in	al Irrotational motion produced by motion of circular, co-axial and elliptic nfinite mass of liquid. Theorem of Blasius. Motion of a sphere through a liquid at Liquid streaming past a fixed sphere. Equation of motion of a sphere.	02
Textbooks */ Reference Books	 W.H.Besaint & A. S. Ramsey. A Treatise on Hydro mechanics. Part II. CBS I Delhi. 1988. G.K. Batchelor. An Introduction of Fluid Mechanics. Foundation Books. No 1994. F. Choriton. Textbook of Fluid Dynamics. C.B.S. Publishers. Delhi 1985. Fluid mechanics — Bansal. Fluid dynamics, M.D. Raisinghania, S.Chand Publication. 	

Course Title		Fuzzy Sets And Their Applications		
Type of Cou	rse	Theory, Paper XIII [A]		
Credit		4		
Course Asses	ssment	Sessional Tests 30%		
		Semester Examination 70%		
		Contents of Syllabus	No Questio	of ns
Cartesian pro The Extensio	oducts. Al on Princip	ts. Convex fuzzy sets. Basic operations on fuzzy sets. Types of fuzzy sets. Igebraic products. Bounded sum and difference. T-norms and t-conorms. Ie — The Zadeh's extension principle. Image and inverse image of fuzzy Elements of fuzzy arithmetic.	02	
		Euzzy Graphs — Fuzzy relations on fuzzy sets. Composition of relation equations. Fuzzy graph. Similarity relation	02	
Possibility di theo Fuzzy L Fuzzy quant	stribution logic — A tifiers. Li	Suzzy measures. Evidence theory. Necessity measure. Possibility measure. n. Possibility theory and fuzzy sets. Possibility theory versus probability An overview of classical logic. Multivalued logics. Fuzzy propositions. inguistic variables and hedges. Inference from conditional fuzzy positional rule of inference.	02	
Fuzzification center of max Decision ma making.	a. Defuzzi tima. and t king in F decision n	zzy Control-Fuzzy controllers. Fuzzy rule base. Fuzzy inference engine. ification and the various defuzzification methods (the center of area. the the mean of maxima methods). uzzy Environment-Individual decision making. Multiperson decision making. Multistage decision making. Fuzzy ranking methods. Fuzzy linear	02	
Textbooks */ Reference Books		I.J. Zimmermann : Fazzy set theory and its Applications. Allied Publishers Delhi. 1991.	Ltd. Nev	V

Course Title		Synabus of MI.A./MI.SC. 1V Semester	
		Algebraic Topology	
Type of Cou	rse	Theory, Paper XIII [B]	
Credit		4	
Course Asses	sment	Sessional Tests 30%	
		Semester Examination 70%	
		Contents of Syllabus	
UNIT I			
	0 1	topy of maps between topological spaces. homotopy	0.2
		ly connected spaces. fundamental groups of S and S ^{i} x S ^{i} etc.	02
		of S. N>1 using Van Kampen's theorem. fundamental groups of	
1 0	0 1	d point theorem. fundamental theorem of algebra. vector fields	
<u>.</u>	ets. Frobenius theorem	for 3 x 3 matrices.	-
UNIT II	and unique weth life	theorem equating homotopy theorems, show of according	02
		theorem. covering homotopy theorems. group of covering naps in terms of fundamental groups. universal covering. its	02
	0	s and topological groups.	
1		by. Eilenberg Steenrod axioms of homology (no proof for	
		n axiom and exact segnence axiom) and theory application.	
	een fundamental group		
UNIT III	con rundumentar group	und mist nomorogy.	
	of homology of S. Br	ouwer's fixed point theorem for $f : E^n \rightarrow E$. application	02
		oris sequence (without proof) & its applications. Singular	
		roduct. connecting homomorphism. contra-functoriality of	
		anality of connecting homomorphism. exact cohomology	
0	0.	nce. excision properties. cohomology of a point. Mayer	
		n in computation of cohomology of S ⁿ . RP". CP ^I torus. compact	
	nus g and non-orientabl		
UNIT IV		-	
	nected 2-manifolds the	eir orientabiligy and non-orientabiligy. examples. connected	02
-		e and Klein's bottle from a square. Klien's bottle as union of	02
	1 0 1	ere. torus and projective plannes. Klin's bottle as union of two	
	s. triangulation of comp		
		urfaces. connected sum of tours and projective plans as the	
		planes. Euler characteristic as a topological invariant of	
	1 0	rmula. 2-manofolds with boundary and their classifications.	
-		rface, models of compact bordered surfaces in \mathbb{R}^3 .	
	References :		NT
*/		s. Topology — A first Course. Prentice Hall of India Pvt. Ltd.,	New
Reference	Delhi, 1978.		

Books

Course Title	Μ	echanics of Solids		
Type of Course		neory, Paper XIV [A]		
Credit	4			
Course Assessme		ssional Tests 30%		
	Se	emester Examination 70%	T	
		Contents of Syllabus	No Questions	of
UNIT I				
Analysis off Stra	in-Affine	e transformation. Infinite simal affine deformation. Geometrical		
interpretation of	the comp	oonents of stain. Strain quadric of Cauchy. Principal strains and	02	
invariants. Genera	l infinite s	simal deformation. Saint-Venant's equations of Compatibility. Finite		
deformations.				
UNIT II				
	-Stress te	ensor. Equations of equilibrium. Transformation of coordinates. Stress	02	
-		l stress and invariants. Maximum normal and shear stresses.		
1	. 1.			
UNIT III				
1	•	eneralized Hooke's law. Homogeneous isotropic media. Elasticity	02	
-	-	a. Elasticity moduli for isotropic media. Equilibrium and dynamic		
		elastic solid. Strain energy function and its connection with Hooke's		
		n Beltrami-Michell compatibility equations. Saint-Venant's principle.		
Torsion-Torsion	of cylindr	rical bars. Tortional rigidity. Torsion and stress functions. Lines of		
		blems — Plane stress. Generalized plane stress. Airy stress function.		
General solution	of Biharı	monic equation. Stresses and displacements in terms of complex		
potentials. Simple	e problem	s. Stress function appropriate to problems of plane stress problems of		
semi-infinite solid	ls with di	splacements or stresses prescribed on the plane boundary.		
UNIT IV				
Waves-Propagati	on of wa	wes in an isotropic elastic solid medium. Waves of dilation and	02	
		astic surface waves such as Rayleigh and Love waves.		
		Theorems of minimum potential energy. Theorem of minimum		
		eciprocal theorem of Betti and Rayleigh. Deflection of elastic string		
	0.	lastic membrane. Torsion of cylinders. Variational problem related to		
		tion of Euler's equation by Ritz. Galerkin and Kantorovich methods.		
Re	ferences	:		
Textbooks	• I.S.	Sokolnikoff, Mathematical Theory of Elasticity. Tata McGraw-Hill P	ublishing	5
*/		mpany Ltd., New Delhi. 1977.		
Reference		E. Love. A Treatise on the Mathematical Theory of Elasticity. Cambridg	e Univers	sity
Books		ss. London. 1963.		
		C. Fung Foundations of Solid Mechanics. Prentice Hall, New Delhi. 196	5.	
		noshenko and N. Goodier. Theory of Elasticity, McGraw Hill, New		
	York 19	70		

Course Title		Operations Research	
Type of Cou		Theory, Paper XIV [B]	
Credit		4	
Course Asse	ssment	Sessional Tests 30%	
		Semester Examination 70%	
		Contents of Syllabus	No of Questions
- 0	oroblems v	ction, sequencing problem with n-jobs and two machines. optimal with n-jobs and three machine. Problems with n-jobs and m-machine,	02
Replacemen remains sam time and the individual re Queuing the Poisson proc	t of items e during t value of m placement ory : Intro cess and ex nition of t	ems: Introduction, replacement of item that Deteriorate with time, whose maintenance costs change with time and the value of money he period. replacement of items whose maintenance costs increase with noney also changes with time. replacement of items that fail completely, t policy, group replacement policy. oduction, characteristics of queuing system, queue discipline, symbols etc. exponential distribution, properties of Poisson process, classification of transient and steady state, model (M/M/L) (Din Fo), (M/M/I) (SIRO)	02
problems, pro non-linear pr multiplier.	oblems of ogrammin	nming — Introduction, definitions of general non-linear programming constrained maxima and minima; necessary and sufficient conditions for ng problems, Hessian — matrix, Lagrangian functions with Lagrangian equality constraints. sufficiency of saddle point problem. Kuhn-Tucker	02
	-	ng techniques — Introduction of GMPP & GN 1 PP its sanction by Wolfe's od.	02
Textbooks */ Reference Books	McC with 2. G 3. G 4. K New	es: S. Hillier and G. J. Lieberman. Introduction to Operations Research (Siz Graw Hill International Edition. Industrial Engineering Series. 1995 (This h a CD containing tutorial software). Hadley, Linear Programming. Narosa Publishing House. 1995. Haadly. Nonlinear and Dynamic Programming. Addisor-Wisely. Readin Canti Swarup, P.K.Gupta and Man Mohan, Operations Research, Sultan Chan w Delhi. S. Rao. Optimization Theory and Applications. Wiley Eastern Ltd., New	book comes ng Mass. d & Sons,

Course Title	Differentiable Structures On A Manifold	
Type of Cours	e Theory, Paper XIV [C]	
Credit	4	
Course Assess	nent Sessional Tests 30% Semester Examination 70%	
		lo of Duestions
Linear connect	e manifolds. Riem Almost analytic vector .fields. Curvature tensor. ons. Kahler manifolds. Affine Connections. Holomorphic sectional curvature. r. Almost Analytic Vector fields	02
•	manifolds. Curvature identities. Constant Holomorphic sectional curvature. vector Fields.	02
Almost Cont	manifolds. Analytic vector fields. Conformal transformation. Curvature identities, ct Metric manifolds — Almost Grayan manifolds. K-Contact Riemannian kian manifolds. Cosymplectic manifolds.	02
	of almost Hermite and Kahler manifolds. Sub-manifolds of almost contact metric Submanifolds of Kahler manifolds and Sasakian manifolds. The integrability of	02
Textbooks */ Reference Books	References : R.S. Mishra. Structures on a differentiable manifold and their applications. Chadrama Prakashan. Allah 1984.	nabad,

Course Title	Infor	mation Theory	
Type of Course		ry, Paper XIV [D]	
Credit	4		
Course Assessm	ent Sessi	onal Tests 30%	
	Seme	ester Examination 70%	
		Contents of Syllabus	No of
			Questions
properties. Joint Noiseless coding	and condition = ingredien and sufficient	oms for a measure of uncertainty. The Shannon entropy and its nal entropies. Transformation and its properties. nts of noiseless coding problem. Uniquely decipherable nt condition for the existence of instantaneous codes.	02
Calculation of c	hannel capac	Classification of channels. Information processed by a channel. city. Decoding schemes. The ideal observer. The rmation theory and its strong and weak converses	02
absolutely contin	uous randon	time- discrete Gaussian channel. Uncertainty of an n variable. The converse to the coding theorem for time- ne time-continuous Gaussian channel. Band-limited channels.	02
continuous at the information func- to Tverberg and Derivations and The branching	origin, nonn tions and entr Leo. The gen their role in the property. Son operty. Entro	undamental equation of information, information functions egative bounded information functions, measurable ropy. Axiomatic characterizations of the Shannon entropy due eral solution of the fundamental equation of information. he study of information functions. me characterizations of the Shannon entropy based upon opies with the sum property. The Shannon inequality. Sub	02
Textbooks/ F Reference Books	 F.M.Reza Company in J. Aczel 	nformation Theory, Inter science Publishers. New York 1965. a. An introduction to information Theory. Mc Graw-Hill Book nc. 1961. and Z. Daroczy. On measures of information and their character press. New York	rizations.

Course Title	Integral Transforms	
Type of Course	Theory, Paper XV [A]	
Credit	4	
Course Assessn	nent Sessional Tests 30% Semester Examination 70%	
	Contents of Syllabus	No of Questions
UNIT I		Questions
Fundamental Fo convergence, at Inversion formu	sform-Elementary properties of the transform. Relation to the Laplace transform.	02
Transform, Fou	asform :Difichlet's conditions. Definition of Fourier transform. Fourier Sine arier cosine transform. Inversion theorem for complex fourier transform. avolution and convolution theorem for Fourier transforms. Parseval's identity of ms.	02
	form : Definition of Mellin transform and its properties. Mellin transforms of certain integral expressions.	02
	rm : Definition of Hankel transform and its elementary properties. Inversion Hankel transform. Hankel transform of derivatives, Parseval's theorem.	02
Textbooks	1. The Laplace Transforms - D.V.Widder	
*/	2. Use of Integral Transforms Sneddon	
Reference Books		

Course Title	Algebraic Coding Theory	
Type of Course	e Theory, Paper XV [B]	
Credit	4	
Course Assessr	nent Sessional Tests 30% Semester Examination 70%	
		No of Questions
UNIT I		
0	Introduction, examples, Impotant code parameters, Correcting and detecting backing bound, Gilbert-Varshamov bound, Sigleton bound.	02
	Vector spaces over finite fields,Linearcodes,Binary linear , Hamming weight, codes, Generator matrix and parity check matrix	02
1	linear codes, Encoding with a linear code, Decoding of linear codes, Cosets, bur decoding for linear codes, Syndrom decoding.	02
matrices, Decod Some special cy codes,Decoding Generator and I	efinitions, Generator and parity check polynomials, Generator and parity check, ling of cyclic codes, Burst-error-correcting codes. Reed-Solomon codes. yclic codes: BCH codes, RS codes, Definitions, Parameters of BCH of BCH codes.Reed-Muller Codes.Maximum-distance Separable (MDS) Codes. Parity-check matrics.of MDS Code. Weight Distribution of MDS Code. MDS codes Codes derived from Hadamard Matrices.	02
*/	 R.Hill, Afirst course in codding theory, oxford university press F.Macwwilliams and N.Sloane, The Theory of error correcting codes, North Hollan Publishing company, Amsterdom. San Ling and Chaoingxing, Coding Theory- A First Course. Applied Abstract Algebra - Lid and Pilz 2nd Edition. Todd K. Moon, Error Correction Coding, Wiley India 	nd

Course Title		Mathematic of Finance and Insurance	
Type of Course	è.	Theory, Paper XV [C]	
Credit		4	
Course Assessn	nent	Sessional Tests 30%	
		Semester Examination 70%	-
		Contents of Syllabus	No of Questions
UNIT I			
Prerequisite —	Applic	ation of Mathematics and Finance & Insurance Optional Paper BMG 1 304 (a	
& b) F)			02
Financial Deriv	vatives -	- An Introduction : Types of Financial Derivatives - Forwards and Futures :	
Options and its	kind : a	and SWAPS.	
The Arbitrage	Theoren	n and Introduction to portfolio Selection and Capital Market Theory —	
Static and Cont	inuous	— Time Model.	
UNIT II			
Pricing by Arbit	trage —	- A Single — Period Option Pricing Model: Multi Pricing	02
Model-Cox-Ro	oss-Rub	instein Model : Bounds on Option Prices.	
The Dynamics	of Deriv	vative Prices-Stochastic Differential Equations (SDEs) — Major Models of	
SDEs. Lonear	Consta	Int Coefficient SDEs: Geometric SDEs : Square Root Process: Mean	
Reverting Proc	ess and	Omstein-Uhlenbeck Process.	
Martingale Mea	asue and	d Risk-Neutral Probabilities : Pricing of Binomial Options with equivalent	
martingale mea	asures.		
UNIT III			
The Black-Sch	noles O	ption Pricing Model- Using no arbitrage approach, limiting case of	02
Binomial Optic	on Pricir	ng and Risk-Neutral probabilities. The American Option Pricing-Extended	
Trading Strates	gies; Ai	nalysis of American Put Options: early exercise premium and relation to	
free boundary	problem	ns. Concepts from Insurance : Introduction : The Claim Number Process :	
The Claim Size	e Proce	ss: Solvability of the Portfolio: Reinsurance and Ruin Problem.	
Premiumand C	Ordering	of Risks-Premium Calculation Principles and Ordering Distributions.	
UNIT IV			
Distributions o	f Aggre	egate Claim Amount-Individual and Collective Model: Compound	02
Distributions :	Claim I	Number of Distributions: Recursive Computation Methods: Lundberg Bounds	
and Approxima	ation by	Compound Distributions. Risk Processes-Time-Dependent Risk	
Models: Poisso	on Arriv	val Processes : Ruin Probabilities and Bounds Asymptotic and	
Approximation	n.Time l	Dependent Risk Models — Ruin Problems and Computations of Ruin	
Functions; Dua	l Queui	ing Model : Risk Models in Continuous Time and Numerical Evaluation of	
Ruin Functions	5.		
Textbooks	•	John C. Hull, Options. Futures and other derivatives. Prentice Hall of India	ı Pvt. Ltd
*/		Sheldon M. Ross. An Introduction to Mathematical Finance. Cambridge Univ	
		-	•
Reference	Pres	SS.	

Course Title	Applied Statistics	
Type of Course	Theory, Paper XV [D]	
Credit	4	
Course Assessment	Sessional Tests 30% Semester Examination 70%	
	Contents of Syllabus	No of Questions
	e elasticity and demand. partial elasticity of demand. Lontieg's method. s curve and Engle's law. Paretv's law of income distribution, curves of	02
statistical analysis of C. exception of sum of sq	The way classification, statistical analysis of the mode.Design experiment- R.D. (Completely randomized design) least square estimates of effects. Juares. randomized block design (R.B.D.) statistical analysis of R.B.D. for periment unit. Variance of estimates. expectation of sum of squares. lative to C.R.D.	02
types of sampling. sele random sampling. Psychological and educa rankings, scaling of no	ey. Principle steps in a sample survey sampling and non-sampling error. ection of a simple random sample, simple random sampling, stratified ational statistics — scaling of scores on a test. percentile scores, scaling of ormal probability curves. scaling of ratings in terms of normal curve, , error variance, index of reliability, parallel test method of determining	02
population, measurem	f vital statistics, methods of obtaining vital statistics, measurement of nent of mortality, crude death rate (C.D.R.) specific death rate (SDR). e or (Mortality table). abridged life table, fertility measurement of	02
Reference •	Fundamental of Applied Statistics — S.C.Gupta& V. K. Kappor Statistical Method — S.P. Gupta An Introduction to statistical method — S.B.Gupta	<u> </u>

Course Title	Boundary Layer Theory	
Type of Course	Theory, Paper XV [E]	
Credit	4	
Course Assessment	Sessional Tests 30% Semester Examination 70%	
Contents of Syllabus		
UNIT I		
Exact solution of Navier-Stoke's equation — flow between two concentric rotating cylinders. Hiemenz flow. flow due to lane wall suddenly set in motion, flow due to an oscillating wall.		02
UNIT II02Theory of very slow motion — flow past a sphere. (Stroke's flow). Flow past a sphere (Osceen'sflow), Lubrication Theory. Theory of laminar boundary layer (a) two dimensional boundary layer equation for flow over a plane wall, boundary layer on a flat plate. (Blassius-Topler solution).02		
UNIT III Characteristic of boundary layer parameters. (b) Similar solution of the boundary layer equation. boundary layer layer. How past a wedge boundary layer along the wall of a convergent channel. boundary layer on a symmetrically placed cylinder and body of evolution. 02		
UNIT IV Boundary layer control in laminar flow — methods of boundary layer control in laminar flow, boundary layer suction.		
Textbooks */ Reference Books	Boundary layer theory —Slicsting. Foundation of fluid dynamics S.W. Yuan, Prentice Hall of India (F)	

Course Title	Dissertation	
Type of Course	PROJECT, PAPER XVI	
Credit	4	
Course Assessment	100%	
Contents of Syllabus		
Any one of the Special Paper		